BRIEF COMMUNICATIONS

Eremurus POLYSACCHARIDES. XXVII. FRACTIONATION OF THE PECTIN SUBSTANCES FROM THE LEAVES OF Eremurus lactiflorus

N. P. Yuldasheva and D. A. Rakhimov

UDC 547.917

We have previously studied the dynamics of the accumulation of pectin substances (PcSs) in the leaves of *Eremurus lactiflorus* O. Fedtsch. [1]. In the present communication we give the results of an investigation of homogeneous fractions isolated from the the PcSs of *E. lactiflorus* leaves.

Gel chromatography on Sephadex G-100 showed that the PcSs were polydisperse. In order to obtain homogeneous fractions, the PcSs were subjected to alkaline saponification with 0.15% caustic soda at room temperature for 18 h. On neutralization with 18% HCl solution, a precipitate deposited, and this was washed with 80% methanol and with pure methanol — fraction I (yield 62%). The mother solution was dialyzed, dried, and precipitated with methanol (1:2), giving fraction II (yield 10%). The characteristics of the fractions obtained by alkaline saponification are given below:

Fraction	$[\alpha]_D^{20}$, deg	Monosaccharide composition, moles						
	(c 0.25; H ₂ O)	Rha	Ara	Xyl	Man	Glc	Gal	GalUa
I	+230	5.56	7.66	4.4	1.12	1.0	6.3	÷
11	+190	6.8	6.4	11.4	1.0	6.2	28.4	+

To determine their monosaccharide compositions, samples were hydrolyzed with 2 N H_2SO_4 in sealed tubes at 100°C for 48 h, and the products were subjected to paper chromatography (PC) (system: butan-1-ol-pyridine-water (6:4:3), revealing agent aniline hydrogen phthalate) and, in the form of aldononitrile acetates, to GLC [1, 2].

To obtain homogeneous fractions, a 1% solution of fraction I was treated with 1 N NaOH (4 ml), and then a 2 M solution of CH_3COONa (6 ml) was added dropwise, and the mixture was left at +4°C for 18 h. The precipitate that deposited (fraction D) was centrifuged off and was washed with 80% methanol and with pure methanol (yield of fraction D, 23%). The supernatant was treated with a 2 M solution of CH_3COONa (3 ml) and the resulting precipitate was separated off (fraction E) and was washed with 80% and with pure methanol (the yield of fraction E was 4%). The mother solution was dialyzed, concentrated, and precipitated with methanol (1:2), giving fraction F (yield, 50%). The homogeneity of fractions D, E, and F was confirmed by gel chromatography on Sephadex G-10. Their characteristics are given below:

Fraction	$\left[\alpha\right]_{D}^{20}$ deg.	GalUA content, %	Monosaccharide composition, moles					
	(c 0.25: H ₂ O)		Rha	Ага	Xy!	Gal		
D	-156	60.0	1.63	1.0	3.25	3.0		
E	-170	61.0	1.6	1.0	3.4	4.0		
F	-184	67.5	1.7	1.0	4.0	5.0		

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (3712) 89 14 75. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 99-100, January-February, 1996. Original article submitted April 6, 1994.

Thus, the PcSs of the leaves of E. lactiflorus have been fractionated to give three homogeneous fractions.

REFERENCES

- 1. N. P. Yuldasheva and D. A. Rakhimov, Khim. Prir. Soedin., 109 (1990).
- 2. Yu. S. Ovodov, The Gas-Liquid Chromatography of Carbohydrates [in Russian], Vladivostok (1970).

.

-